Linux 拨号vps windows公众号手机端

python进行数据清洗的代码怎么写

lewis 9年前 (2017-01-31) 阅读数 9 #程序编程
文章标签 python

数据清洗是指对数据进行预处理,包括去除重复值、缺失值处理、异常值处理等操作。下面是一些常见的数据清洗操作的示例代码:

  1. 去除重复值:
df = df.drop_duplicates()
  1. 缺失值处理:
  • 删除含有缺失值的行:
df = df.dropna()
  • 填充缺失值为指定值:
df = df.fillna(value)
  • 插值填充缺失值:
df = df.interpolate()
  1. 异常值处理:
  • 根据标准差删除异常值:
df = df[np.abs(df['column'] - df['column'].mean()) <= (3 * df['column'].std())]
  • 根据箱线图删除异常值:
q1 = df['column'].quantile(0.25)
q3 = df['column'].quantile(0.75)
iqr = q3 - q1
df = df[(df['column'] >= q1 - 1.5 * iqr) & (df['column'] <= q3 + 1.5 * iqr)]

以上代码只是示例,具体的数据清洗操作需要根据具体的数据情况进行调整和扩展。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门