Linux 拨号vps windows公众号手机端

Scikit-learn中怎么使用特征提取

lewis 1年前 (2024-03-29) 阅读数 8 #程序编程
文章标签 Scikit-learn

在Scikit-learn中,特征提取通常是通过特征提取器(如CountVectorizer、TfidfVectorizer等)来实现的。下面是一个简单的使用CountVectorizer来提取文本特征的示例:

from sklearn.feature_extraction.text import CountVectorizer

# 创建CountVectorizer对象
count_vectorizer = CountVectorizer()

# 在文本数据上拟合并转换特征
X = count_vectorizer.fit_transform(['I love Scikit-learn', 'Scikit-learn is great'])

# 输出特征矩阵
print(X.toarray())

# 输出特征对应的单词
print(count_vectorizer.get_feature_names())

在上面的示例中,首先创建了一个CountVectorizer对象,然后对文本数据进行拟合并转换,最后输出了特征矩阵和特征对应的单词。通过这种方式,可以将文本数据转换为特征矩阵,以便进行机器学习模型的训练。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门