Linux 拨号vps windows公众号手机端

Scikit-learn中怎么实现支持向量机

lewis 1年前 (2024-03-12) 阅读数 15 #程序编程
文章标签 Scikit-learn

在Scikit-learn中,支持向量机模型可以通过svm模块中的SVC类来实现。下面是一个简单的示例代码:

from sklearn import svm
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载示例数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 创建支持向量机模型
model = svm.SVC()

# 在训练集上训练模型
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

在上面的示例中,首先加载了一个示例数据集(鸢尾花数据集),然后将数据集分为训练集和测试集。接着创建了一个支持向量机模型,并在训练集上训练模型。最后在测试集上进行预测并计算准确率。

除了SVC类,Scikit-learn还提供了其他支持向量机模型的实现,例如NuSVCLinearSVC等,可以根据具体需求选择合适的模型。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门