Linux 拨号vps windows公众号手机端

在Keras中,如何创建一个简单的全连接神经网络

lewis 5年前 (2020-04-10) 阅读数 12 #大数据
文章标签 keras

在Keras中,可以通过Sequential模型来创建一个简单的全连接神经网络。以下是一个例子:

from keras.models import Sequential
from keras.layers import Dense

# 创建一个Sequential模型
model = Sequential()

# 添加输入层和隐藏层
model.add(Dense(units=64, activation='relu', input_dim=100))

# 添加输出层
model.add(Dense(units=10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)

在这个例子中,我们创建了一个包含一个输入层,一个隐藏层和一个输出层的全连接神经网络。输入层有100个特征,隐藏层有64个神经元并使用ReLU激活函数,输出层有10个神经元并使用softmax激活函数。我们使用adam优化器和交叉熵损失函数来编译模型,并训练模型10个epochs。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门