Linux 拨号vps windows公众号手机端

Torch中怎么部署训练好的模型到生产环境中

lewis 5年前 (2020-04-30) 阅读数 11 #大数据
文章标签 Torch

在Torch中部署训练好的模型到生产环境中,通常可以通过以下几个步骤实现:

  1. 导出模型参数:将训练好的模型参数保存到一个文件中,以便在生产环境中加载模型。
torch.save('model.pth', model:clearState())
  1. 加载模型参数:在生产环境中加载保存的模型参数文件,得到一个模型对象。
model = torch.load('model.pth')
  1. 部署模型:将加载的模型对象应用于生产环境中的数据,并进行预测或推断。
output = model:forward(input)
  1. 优化模型:根据生产环境的需求对模型进行优化,例如进行模型压缩、量化等操作,以提高模型在生产环境中的性能和效率。

  2. 部署模型服务:将部署好的模型集成到生产环境中的服务中,以便实时地对数据进行预测或推断。

需要注意的是,在部署模型到生产环境中时,还需考虑模型的性能、稳定性、安全性等方面的问题,确保模型能够在生产环境中正常运行并满足业务需求。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门