pytorch卷积神经网络如何搭建
要搭建一个基本的PyTorch卷积神经网络,你需要做以下几个步骤:
- 导入PyTorch库
import torch
import torch.nn as nn
import torch.optim as optim
- 定义一个继承自
nn.Module
的卷积神经网络类
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc = nn.Linear(16 * 14 * 14, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
- 实例化神经网络模型并定义损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)
- 训练神经网络模型
for epoch in range(num_epochs):
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
这样就可以搭建一个简单的PyTorch卷积神经网络模型了。你可以根据自己的需求调整模型的结构和参数。
版权声明
本文仅代表作者观点,不代表米安网络立场。
上一篇:hadoop去重的工作原理是什么 下一篇:hive导出数据的方式有哪些
发表评论:
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。