Linux 拨号vps windows公众号手机端

在Keras中如何处理缺失值

lewis 5年前 (2020-02-07) 阅读数 10 #大数据
文章标签 keras

在Keras中处理缺失值通常需要在数据准备阶段进行处理。以下是一些处理缺失值的方法:

  1. 删除包含缺失值的样本:可以通过使用dropna()方法来删除包含缺失值的样本。
import pandas as pd

# 删除包含缺失值的样本
data = data.dropna()
  1. 填充缺失值:可以使用fillna()方法来填充缺失值。
# 使用平均值填充缺失值
data.fillna(data.mean(), inplace=True)
  1. 使用Keras的SimpleImputer类来填充缺失值:
from keras.preprocessing import imputation

imputer = imputation.SimpleImputer(missing_values=np.nan, strategy='mean')
data = imputer.fit_transform(data)

在选择处理缺失值的方法时,需要根据数据的特点和具体情况来选择合适的方法。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门