Linux 拨号vps windows公众号手机端

spark中怎么做数据清洗

lewis 5年前 (2020-01-28) 阅读数 11 #网络运维
文章标签 spark

在Spark中进行数据清洗通常包括以下几个步骤:

  1. 缺失值处理:使用drop()方法删除包含缺失值的行或使用fillna()方法填充缺失值。
val cleanedData = rawData.na.drop()
  1. 重复值处理:使用dropDuplicates()方法删除重复的行。
val cleanedData = rawData.dropDuplicates()
  1. 数据类型转换:使用withColumn()方法将数据列的类型转换为正确的类型。
val cleanedData = rawData.withColumn("age", col("age").cast(IntegerType))
  1. 异常值处理:根据实际情况筛选或处理异常值。
val cleanedData = rawData.filter(col("age") > 0)
  1. 数据格式化:对数据进行格式化,例如去除空格、特殊字符等。
val cleanedData = rawData.withColumn("name", trim(col("name")))

通过以上步骤,可以对数据进行清洗,使其符合分析需求。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门