Linux 拨号vps windows公众号手机端

R语言数据清洗的技巧有哪些

lewis 5年前 (2020-02-11) 阅读数 12 #程序编程
文章标签 r语言

R语言数据清洗的技巧包括:

  1. 缺失值处理:使用函数如na.omit(), complete.cases()或者is.na()来识别和处理缺失值。

  2. 异常值处理:通过可视化和统计方法识别异常值,并使用函数如na.omit()或者outliers()来处理异常值。

  3. 数据转换:使用函数如as.numeric(), as.character(), as.Date()等来将数据转换为不同的格式。

  4. 数据合并:使用函数如merge(), rbind()或者cbind()来合并不同数据集。

  5. 数据筛选:使用函数如subset()或者filter()来筛选数据。

  6. 数据排序:使用函数如order()或者arrange()来对数据进行排序。

  7. 数据重塑:使用函数如melt(), dcast()或者reshape()来对数据进行重塑。

  8. 数据去重:使用函数如duplicated()和unique()来去除重复的数据。

  9. 字符串处理:使用函数如gsub(), grep()或者strsplit()来处理字符串数据。

  10. 数据抽样:使用函数如sample()来对数据进行抽样。

这些技巧可以帮助您清洗和准备数据,以便进行进一步的分析和建模。

版权声明

本文仅代表作者观点,不代表米安网络立场。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门